A 5M portable stress dish

K6MG

Gary Lauterbach

A stress dish partial History

- K2UYH in 1966: CQ magazine article on wooden dish
- K2RIW in 1972: QST magazine article on 12' aluminum tubing dish
 - I was there at the ECVHFS meeting where the QST cover photo was taken
 - I was 16
 - Republished in ARRL handbook since
- N2UO in 2013: described his 20' stress dish using steel emt tubing:
 - http://www.ntms.org/eme/presentations/w5lua/N2UO_A%20lightweight%2020%20 foot%20stressed%20dish%20for.pdf
- K2UYH IN 2016: published several papers on his recent use of portable stress dishes.
 - http://www.eme2016.org/wp-content/uploads/2016/08/EME-2016-K2UYH-Presentation.pdf

Why a stress dish?

- Fast setup
 - About 1 hour
- Low weight
 - <100 pounds
- Large aperture
 - 5M Easy CW QSOs on 23cm
- Low cost: about \$300 in materials

The theory of stress dishes

- Parabolic curve:
 - Y = X^2/4F
- Cantilevered elastic beam: where M/P force, I length of beam, E elasticity
 - Y = MX^2/2EI Couple Moment M at free end
 - If F = 0.5EL * M we have a perfect fit
 - Y = PX^2/6EI * (3I-X) Perpendicular force P at beam end
 - Many materials are elastic at reasonable forces:
 - Steel tube, Aluminum tube, wood, fiberglass tube

Deviation from Parabola

Optimized Bands: A New Design Concept for Concentrating Solar Parabolic Mirrors

Lifang Li¹ Ph.D. Candidate, ASME Student Member School of Mechatronics Engineering Harbin Institute of Technology 150001 Harbin, China. Iilifang2008@gmail.com

A. F. M. Arif

Professor, Member of ASME Department of Mechanical Engineering King Fahd University of Petroleum & Minerals 31261 Dhahran, Saudi Arabia. afmarif@kfupm.edu.sa

Andres Kecskemethy

Professor Department of Mechanical Engineering University of Duisburg-Essen 47057 Duisburg, Germany. andres.kecskemethy@uni-due.de

Steven Dubowsky

Professor, ASME Fellow Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, 02139 MA. dubowsky@mit.edu

Dish design parameters

- 16 feet diameter
 - Uses 8' rib tubing, can be shipped UPS
- Shallow parabola:
 - 0.5 F/D
 - Higher gain feed: dual mode horn
 - Less force required to deflect ribs
 - Smaller absolute error from parabolic curve, less than 1" peak

Gain decrease due to error

Hub

Ribs

Surface

Feed Support

1296 Feedhorn

- N2UO design dual mode feed horn
 - http://ok1dfc.com/EME/technic/septum/ N2UO%20opt.pdf
- Soldered copper construction
- 0.032 flashing
- Copper septum for circular polarization

Materials

- 18 ¾"x8' fiberglass tube ribs
- 18 1"x1' fiberglass tube receivers at hub
- 2'x2' ¼" aluminum hub plate
- 2" diameter aluminum feed support
 - 2 2" steel exhaust 45 degree
- Yaesu rotator bracket feed support
- 18 Kevlar Kite cord rib stress elements: no stretch
- 200 ft^2 of Aluminum window screen

Sources

- Fiberglass tubing: MAXGAIN Systems
- Aluminum plate and tube, copper flashing: Alan Steel
- Steel 45': O'Reilly Auto
- Yaesu rotor clamp: HRO
- Kevlar cord and window screen: Amazon
- Hardware: Amazon, Los Altos ACE Hardware, Home Depot
 - Ubolts, perimeter cable, bolts, hooks

Results

- 1st weekend: Reno NV
 - Only 6 QSOs, all CW, one EU moon window
 - Tracking and dish surface both problematic
- Changed from 1/2" poultry netting to Aluminum window screen
 - Better conformance to rib curvature
- Finished auto tracking code
- 2nd weekend: Ashland OR
 - 52 QSOs over 2 EU moon windows
 - About half CW and half JT
 - Most JT stations easy copy by ear

Additional Photos (First version, Nevada)

Additional Photos (Second version, Oregon)

